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Mathematics of a Tetrahedron Chain and the
Hamiltonian Cycle Problem

Naoto Morikawa

Abstract. In this article we consider the problem of finding Hamiltonian cycles on a tetra-
hedral mesh. A Hamiltonian cycle is a closed loop through a tetrahedral mesh that visits
each tetrahedron exactly once. Using techniques of a novel discrete differential geometry of
n-simplices, we could immediately obtain Hamiltonian cycles on a rhombic dodecahedron-
shaped tetrahedral mesh consisting of 24 tetrahedrons. For easier visualization, we firstly con-
sider Hamiltonian cycles on triangular meshes and provide some foundations for the study of
the tetrahedral mesh.

1. INTRODUCTION. In this article we consider the problem of finding Hamilto-
nian cycles on a tetrahedral mesh. A Hamiltonian cycle is a closed loop through
a tetrahedral mesh that visits each tetrahedron exactly once. Previously [1] and [2]
study Hamiltonian cycles on a tetrahedral mesh which passes tetrahedrons through a
common vertex. In contrast, we study Hamiltonian cycles which passes tetrahedrons
through a common face. The reason is that through-face type Hamiltonian cycles give
us insights into how a chain of tetrahedrons is folded into a solid shape, where tetra-
hedrons are connected along hinges that are mutually shared by the edges of adjacent
tetrahedrons ([3], [4]). For example, it is known that a rhombic dodecahedron is ob-
tained by folding a closed chain of 24 isosceles tetrahedrons (Figure 1). This implies
there exists a Hamiltonian cycle of tetrahedrons on a rhombic dodecahedron-shaped
tetrahedral mesh consisting of 24 tetrahedrons.

Specifically our target is the Hamiltonian cycle problem on the rhombic dodecahe-
dron-shaped tetrahedral mesh (Figure 1). For easier visualization, we also consider
Hamiltonian cycles on a triangular mesh (Figure 2) and provide some foundations for
the study of the tetrahedral mesh.

Here we give some background knowledge on the topics of tetrahedron chains.
Well known from recreational mathematics are rotating rings of tetrahedrons ([5], [6]).
Although they are usually seen as puzzle toys, there also exist their applications to
industry. For example, a new retractable structure based on three-symmetric Bricard
linkages and rotating rings of tetrahedrons is proposed in [7]. As for mechanisms and
states of self-stress in the rings, a general analysis is provided by [8].

.  

.  

.  

Figure 1. Our problem (A): The Hamiltonian cycle problem on a rhombic dodecahedron-shaped mesh con-
sisting of 24 congruent tetrahedrons. Shown in the brackets is a node and edge-representation of the mesh.
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Figure 2. Our problem (B): The Hamiltonian cycle problem on a triangular mesh consisting of 42 congruent
isosceles triangles. Shown in the brackets is a node and edge-representation of the mesh.

Also known are chains of interconnected isosceles tetrahedrons which were men-
tioned in patents [3] and [4]. The patents describe a transformational folding puzzle
assembly formed of a chain of 24 isosceles tetrahedrons, where tetrahedrons are con-
nected along hinges that are mutually shared by the edges of adjacent tetrahedrons.
Since the tetrahedrons are space-filling, the chain could be contracted into various
solid shapes with no gaps between the tetrahedrons. For example, one could fold the
(closed) chain of 24 tetrahedrons into a rhombic dodecahedron as mentioned above.

Lately applications of the latter type of linked tetrahedrons are found in robotics
and biotechnology. In the field of self-reconfigurable robotics, [9] shows that a chain
of right angle isosceles tetrahedrons can be combined with external actuation to form
arbitrary shapes. In the filed of protein structure analysis, [10] proposes a simple struc-
ture encoding method, where fragments of five amino-acids are approximated by a
chain of five right angle isosceles tetrahedrons. To translate the conformation of local
protein structure into a binary sequence, [10] developed a novel discrete differential
geometry of tetrahedrons. Unlike previous studies, [10] considers connection between
space-filling isosceles tetrahedrons and introduces tangent-bundle like structure on a
set of tetrahedrons.

This article is an introduction to the mathematical framework behind [10], i.e., a
discrete differential geometry of n-simplices. Using techniques from the framework,
we could obtain Hamiltonian cycles on a triangle/tetrahedral mesh almost instantly (if
they exist).

2. HAMILTONIAN CYCLES ON A TRIANGULAR MESH. Let’s start with the
Hamiltonian cycle problem on the triangular mesh shown in Figure 2. Hamiltonian
cycles enter a triangle through a edge and leave the triangle through another edge. In
the figures, we use heavy edges to indicate the third edge of a triangle, i.e., the edge
which is not used in the Hamiltonian cycle. The boundary of the mesh consists of the
heavy edges of 20 triangles because Hamiltonian cycles don’t go beyond the boundary.

One notable feature of the triangular mesh is its regularity. In particular, one could
associate three-dimensional cubes (3-cubes) over the mesh as shown in Figure 3. We
call them a 3-cube covering of the mesh. In the figure, each of the three upper faces
of a 3-cube is divided into two isosceles triangles by a diagonal segment (heavy line),
where the six triangles on the upper faces are projected onto six triangles in the trian-
gular mesh (Figure 3 (a)). We call a triangle on one of the three upper faces of a 3-cube
a slant triangle. A triangle in the mesh is called a flat triangle.

A flat triangle in the mesh corresponds to a slant triangle on a 3-cube over the mesh
in such a way that the heavy edge of the slant triangle is projected onto the heavy edge
(i.e., the third edge) of the flat triangle. Therefore, the gradient of the slant triangle over
a flat triangle indicates the direction of a trajectory on the flat triangle. Note that the
correspondence between slant and flat triangles (i.e., a 3-cube covering and the mash,)
is not unique. That is, by inverting the up and down of the slant triangles, we would
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(a) (b) (c) 

Figure 3. 3-cubes over a triangular mesh. (a): The correspondence between six slant triangles on the three
upper faces of a 3-cube and six flat triangles in a triangular mesh. (b): 3-cubes over the boundary of the
triangular mesh of Figure 2. (c): Top view of (b).

 

(a) (b) (c) 

Figure 4. Top view of 3-cube coverings of the triangular mesh given by Figure 2 and their corresponding
closed loop decompositions. (a): The 3-cube covering generated by the triangular cones over the boundary. (b):
The 3-cube covering obtained by putting a 3-cube on the covering of (a). (c): The 3-cube covering obtained by
putting four 3-cube on the covering of (b).

obtain another 3-cube covering of the mesh. The amount of labor for computation of
Hamiltonian cycles, though, does not depend on the kind of 3-cube coverings.

In our case, the boundary of the triangular mesh is covered by ten 3-cubes as shown
in Figure 3 (b) and (c). Considering the triangular cones whose top vertices are speci-
fied by the 3-cubes, we obtain a 3-cube covering over the whole mesh (Figure 4 (a)).
Each cone is obtained by piling up 3-cubes whose upper faces are divided into two
isosceles triangles by a diagonal segment (heavy line). By projecting the slant triangles
on the cones onto the mesh, we obtain a flow of flat triangles. In the case of Figure 4
(a), the triangular mesh is decomposed into three closed loops of triangles.

A different 3-cube covering over a triangular mesh corresponds to a different flow
of triangles on the mesh. For example, by putting a 3-cube on the 3-cube covering
of Figure 4 (a), we obtain another 3-cube covering over the mesh. Then, the mesh is
decomposed into five closed loops (Figure 4 (b)). Putting four more 3-cubes on the
3-cube covering, we obtain a Hamiltonian cycle of the mesh (Figure 4 (b))).

3. COTANGENT CONES AND A 3-CUBE COVERING. Now let’s consider more
about the diagonal line segments (heavy lines) on the upper faces of 3-cube coverings.
Using the line segments as edges, we could construct another type of 3-cubes over
the mesh as shown in Figure 5 (a). We call this type of 3-cube a cotangent 3-cube.
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(a) (b) (c) 

Figure 5. (a): A 3-cube covering of a hexagon-shaped triangular mesh and the corresponding cotangent 3-
cube. (Only the three upper faces of the cotangent cube are shown in the figure.) (b): A 3-cube covering of a
triangular mesh and the corresponding three cotangent cones. Three cotangent cones correspond to three closed
loops of length six on the mesh, respectively. (c): A 3-cube covering of a triangular mesh and the corresponding
cotangent cone. The cotangent cone corresponds to the Hamiltonian cycle on the mesh.

(a) (b) 

Figure 6. (a): The corresponding cotangent cones of the 3-cube covering of Figure 4 (a). (b): The correspond-
ing cotangent cones of the 3-cube covering of Figure 4 (c).

A cotangent cone is a cone obtained by piling up cotangent 3-cubes. (3-cubes of the
original type are called tangent cube and cones generated by tangent 3-cubes are called
tangent cone.) Note that the boundary of the area enclosed by a closed loop of flat
triangles on a mesh corresponds to a set of cotangent cones. Roughly speaking, the
boundary is given as the projection image of the intersection of the 3-cube covering
and the corresponding cotangent cones.

For example, a triangular mesh of Figure 5 (b), which consists of three closed loops
of length six, corresponds to three cotangent cones. Each cotangent cone cover the
hexagonal area swept by one of the closed loops. Putting a 3-cube on the 3-cube cov-
ering of the mesh, we obtain a Hamilton cycle of the mesh (Figure 5 (c)). The boundary
of the mesh corresponds to the intersection of a cotangent cone and the 3-cube cov-
ering as shown in the figure. In particular, all the slant triangles over the mesh are
contained in the cotangent cone.

Figure 6 (a) and (b) shows the corresponding cotangent cones of the 3-cube cover-
ings of Figure 4 (a) and (c) respectively. In the case of Figure 6 (a), the longer loop is
covered by a set of three cotangent cones and each of the two shorter loops are covered
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Figure 7. The correspondence between a 4-cube (represented by the Schlegel diagram) and 24 tetrahedrons
in a tetrahedral mesh, where P1 = π((0, 0, 0, 0)), Pxyz = π((1, 1, 1, 0), Pxzw = π((1, 0, 1, 1), Pxyw =
π((1, 1, 0, 1), and Pyzw = π((0, 1, 1, 1). Shown in the brackets are the four upper facets of the 4-cube and
their projection images on R3. The diagonal line segment of each facet is indicated by heavy line.

by a cotangent cone. In the case of Figure 6 (b), the Hamiltonian cycle corresponds to
a set of three cotangent cones.

4. HAMILTONIAN CYCLES ON A TETRAHEDRAL MESH. Having provided
foundations for the study of tetrahedral meshes, we would now consider the Hamilto-
nian cycle problem on the dodecahedron-shaped mesh of Figure 1.

In the case of tetrahedral meshes, we associate four-dimensional cubes (4-cubes)
over a mesh as shown in Figure 7. The projection π from four-dimensional Euclidean
space R4 onto three-dimensional Euclidean space R3 is given by the following equa-
tions: π((l,m, n, k)) = (a, b, c), where

a := (l − n)/
√

2,

b := (m − k)/
√

2,

c := (l − m + n − k)/2.

Roughly speaking, π is a projection of R4 onto the hyperplane defined by l + m +
n + k = 0. In particular, π((l + 1,m + 1, n + 1, k + 1)) = π(l,m, n, k). We then
consider the image of the four upper facets (i.e., face of dimension three) of 4-cubes
on the hyperplane.

Each upper facet of a 4-cube is divided into six tetrahedrons along the diagonal line
segment (heavy line) of the facet as shown in the brackets of Figure 7. We call the six
tetrahedrons a slant tetrahedron. Slant tetrahedrons are projected onto tetrahedrons in
the tetrahedral mesh, which are called flat tetrahedrons. In particular, each flat tetrahe-
dron consists of four short edges and two long edges, where the ratio of the length is√

3/2. The tetrahedron chain shown in Figure 1 is obtained by connecting successive
tetrahedrons via a long edge. The chain has a rotational freedom around the long edges
and is folded into a wide variety of shapes.

As is the case with triangular meshes, we only permit trajectories along the diagonal
line segments (i.e., one of four short edges of a flat tetrahedron) on a tetrahedral mesh.
A trajectory of tetrahedrons enters a tetrahedron through a face and leave the tetrahe-
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Figure 8. Closed loops on a rhombic dodecahedron-shaped mesh of 24 tetrahedrons. (In the figures, Pxz =

π((1, 0, 1, 0), Pyz = π((0, 1, 1, 0), Pyw = π((0, 1, 0, 1), and so on.) (a): Four closed loops induced by the
4-cube covering generated by the cones over the boundary whose top vertices are (1, 1, 1, 0), (1, 0, 1, 1),
(1, 1, 0, 1) and (0, 1, 1, 1). (b): The Hamiltonian cycle induced by the 4-cube covering of three peaks
(1, 0, 1, 0), (0, 1, 1, 0) and (0, 1, 0, 1). (c): The Hamiltonian cycle induced by the 4-cube covering of four
peaks (1, 1, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0), and (0, 0, 1, 1).

dron through one of the two faces which share a short edge with the entrance face. In
particular, any trajectory on a tetrahedral mesh could be obtained by folding the tetra-
hedral chain (of adequate length) given in Figure 1. Note that all but one short edges
of a tetrahedron are contained in the entrance face or the exit face of the tetrahedron.
That is, the fourth short edge of a tetrahedron on a trajectory determines the direction
of the trajectory at the tetrahedron. In the figures, we use heavy line to indicate the
fourth short edge of a tetrahedron.

5. HAMILTONIAN CYCLES ON A RHOMBIC DODECAHEDRON-SHAPED
MESH. Finally let’s consider the Hamiltonian cycle problem on the rhombic dodeca-
hedron-shaped tetrahedral mesh (Figure 1). In this case, the boundary is covered
by four 4-cubes, whose top vertices are (1, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1) and
(0, 1, 1, 1). Considering the four-dimensional cones whose top vertices are spec-
ified by the four 4-cubes, we obtain a 4-cube covering over the whole mesh. By
projecting the slant tetrahedrons on the 4-cube covering onto the tetrahedral mesh,
we obtain a flow of flat tetrahedrons (Figure 8(a)). The mesh is then decomposed into
four closed loops of six tetrahedrons as shown in the figure. The four closed loops
correspond to a cotangent cone of top vertex (0, 0, 0, 0). (Unlike the case of triangular
meshes, we couldn’t distinguish the four loops from each other using a set of cotangent
cones. Note that, since the ”cotangent” lattice is generated by four vectors (1, 1, 1, 0),
(1, 1, 0, 1), (1, 0, 1, 1), and (0, 1, 1, 1), it is rougher than the ”standard” lattice which
is generated by four vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0,0,0,1).)

Putting 4-cubes on the 4-cube covering, we obtain other 4-cube coverings. Unlike
the case of triangular meshes, some of the slant tetrahedrons over a tetrahedral mesh
are not contained in any of the corresponding cotangent cones. However, a slant tetra-
hedron would not be projected onto a tetrahedral mesh if it doesn’t intersect with any
of the corresponding cotangent cones. In our case, it is enough to consider the 4-cubes
contained in the tangent cone with top vertex (0, 0, 0, 0) since the corresponding set of
cotangent cones consists of a cone with vertex (0, 0, 0, 0). (That is, we would obtain
all the 4-cube coverings over the mesh by removing 4-cubes from the tangent cone
with top vertex (0, 0, 0, 0). See Appendix A for a detailed description of the process.)

By considering all the 4-cube coverings over the rhombic dodecahedron-shaped
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mesh, we obtain two Hamiltonian cycles on the mesh. Figure 7 (b) shows the 4-cube
covering of the mesh specified by three 4-cones, whose top vertices are (1, 0, 1, 0),
(0, 1, 1, 0) and (0, 1, 0, 1). The covering gives a Hamiltonian cycle of the mesh. Note
that vertices (1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1) are not contained in the corresponding
cotangent cone of top vertex (0, 0, 0, 0). Figure 7 (c) shows the 4-cube covering of
the mesh specified by four 4-cones, whose top vertices are (1, 1, 0, 1), (1, 0, 1, 0),
(0, 1, 1, 0), and (0, 0, 1, 1). The covering gives the other Hamiltonian cycle of the
mesh.

6. CONCLUSION. We have solved the Hamiltonian cycle problem on a tetrahedral
mesh by piling up 4-cubes diagonally on the mesh. To provide foundation of the math-
ematical framework we use, we started this article with the Hamiltonian cycle problem
on triangular meshes.

In the case of triangular meshes, we could describe a closed trajectory algebraically
with a set of tangent cones and a set of cotangent cones. Particularly the slant triangles
on a trajectory are contained in the corresponding set of cotangent cones. On the other
hand, there exists no such clear correspondence between a trajectory and the corre-
sponding tangent/cotangent cones in the case of tetrahedral meshes. The slant tetrahe-
drons on a trajectory, however, intersect with one of the corresponding set of cotangent
cones. Therefore, the process of piling up 4-cubes will terminate in a finite number of
steps. For the detailed computation process, see Appendix A.

Software program (tetrahedron flow viewer) HeteroNumberViewer is available from
[11].
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A. COMPUTATION OF FLOWS ON THE RHOMBIC DODECAHEDRON-
SHAPED TETRAHEDRAL MESH. We could compute all the 4-cube coverings
of the rhombic dodecahedron-shaped tetrahedral mesh by removing 4-cubes from
the tangent cone with top vertex (0, 0, 0, 0). In the following, Cone{v1, v2, ..., vk}
(vi ∈ R4) denotes the 4-cube covering with peaks v1, v2, ..., vk. (In particular,
Cone{(x, y, z, w)} is the tangent cone with top vertex (x, y, z, w).)

[Step0] Initial 4-cube covering. We start with Cone{(0, 0, 0, 0)}. Shown below
is the flow induced on the rhombic dodecahedron-shaped tetrahedral mesh by 4-
cube covering Cone{(0, 0, 0, 0)}, where Pxlymznwk = π((l,m, n, k)) = ((l −
n)/

√
2, (m− k)/

√
2, (l −m + n− k)/2) ∈ R3. Recall that diagonal line segments

(heavy line) indicate the direction of a trajectory at the tetrahedron.

Pxzw  

Pxz  

Pxw

 

Px  

Pz  

Pxyz  

Pxyw  

Pxy  

Pyw  

Py  

Pyz  P
1
 

Pyzw  

P
1
= 0,0,0( )

a 
b 

c 

Figure 9. Step0: The flow induced by Cone{(0, 0, 0, 0)}

[Step1] Remove a 4-cube at (0, 0, 0, 0). By removing a 4-cube at (0, 0, 0, 0) from
4-cube covering Cone{(0, 0, 0, 0)}, we obtain 4-cube covering Cone{(1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
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Figure 10. Step1: The flow induced by Cone{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
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[Step2] Remove a 4-cube at (1, 0, 0, 0). By removing a 4-cube at (1, 0, 0, 0) from
Cone{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, we obtain Cone{(2, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
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Figure 11. Step2: The flow induced by Cone{(2, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}

[Step3] Remove a 4-cube at (0, 1, 0, 0). By removing a 4-cube at (0, 1, 0, 0) from
Cone{(2, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, we obtain Cone{(1, 1, 0, 0),
(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
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Figure 12. Step3: The flow induced by Cone{(1, 1, 0, 0), (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}
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[Step4] Remove a 4-cube at (0, 0, 1, 0). By removing a 4-cube at (0, 0, 1, 0)
from Cone{(1, 1, 0, 0), (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, we obtain
the flow shown below. There is a closed loop of length six. Note that peaks (2, 0, 0, 0,
(0, 2, 0, 0), and (0, 0, 2, 0) have no influence on the flow.
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Figure 13. Step4: The flow induced by Cone{(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (2, 0, 0, 0), (0, 2, 0, 0),
(0, 0, 2, 0), (0, 0, 0, 1)}

[Step5] Remove a 4-cube at (0, 0, 0, 1). By removing a 4-cube at (0, 0, 0, 1)
from Cone{(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0),
(0, 0, 0, 1)}, we obtain the flow shown below. We also remove peaks (2, 0, 0, 0,
(0, 2, 0, 0), (0, 0, 2, 0), and (0, 0, 0, 2) from the 4-cube covering because they have
no influence on the flow. There are four closed loops of length six.
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Figure 14. Step5: The flow induced by Cone{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1),

(0, 0, 1, 1)}

10 c⃝ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 September 4, 2014 5:54 p.m. manuscript-NM.tex page 11

[Step6] Remove a 4-cube at (1, 1, 0, 0). By removing a 4-cube at (1, 1, 0, 0) from
Cone{(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}, we
obtain the flow shown below. There are two closed loops of length six and one closed
loop of length 12.
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Figure 15. Step6: The flow induced by Cone{(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}

[Step7] Remove a 4-cube at (1, 0, 0, 1). By removing a 4-cube at (1, 0, 0, 1) from
Cone{(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}, we obtain the
flow shown below. There are one closed loop of length six and one closed loop of
length 18.
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Figure 16. Step7: The flow induced by Cone{(1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}
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[Step8a] Remove a 4-cube at (0, 0, 1, 1). By removing a 4-cube at (0, 0, 1, 1) from
Cone{(1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}, we obtain the flow shown be-
low. There is a closed loops of length 24, i.e., we obtain a Hamiltonian cycle of the
mesh.

 

Pxzw  

Pxz  

Px2yzw2

 

Pxyz2w  

Pxyz  

Pxyw  

Px2y2zw  

Pyw  

Pxy2zw  

Pyz  

Pxyzw  

Px2yzw  

Pxyz2w2
 

Pxyzw2
 Pyzw  

Pxz = 0,0,1( )

Pyz = !1 / 2,1 / 2,0( )
Pyw = 0,0,!1( )

 

Pxyz2w2 = Pzw = !1 / 2,!1 / 2,0( )

Figure 17. Step8a: The flow induced by Cone{(1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1)}

[Step8b] Remove a 4-cube at (0, 1, 0, 1). By removing a 4-cube at (0, 1, 0, 1) from
Cone{(1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}, we obtain the flow shown be-
low. We obtain another Hamiltonian cycle of the mesh. In the computation process,
we see some closed loops of tetrahedrons. As for the loops of length 24, there exists
17 kinds of closed loops of tetrahedrons. That is, we would obtain 17 kinds of solid
shapes by folding the (closed) tetrahedron chain of length 24 given in Figure 1. Two
of them are obtained in this article. See Appendix B for the distribution of length of
closed trajectories of tetrahedrons and others.
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Figure 18. Step8b: The flow induced by Cone{(1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 1, 1), (1, 1, 0, 1)}
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B. THE DISTRIBUTION OF LENGTH OF CLOSED TRAJECTORIES. Shown
below is the distribution of length of closed trajectories of triangles, tetrahedrons, and
other n-simplices (As for meshes of n-simplices, see [10]). In the table, closed tra-
jectories with the same folding pattern are identified. Roughly speaking, two closed
trajectories are identified if and only if they coincide with each other by rotational
shift, inversion, or reversion.

Table 1. The distribution of length of closed trajectories

Length Triangular Tetrahedral 4-simplicial 5-simplicial 6-simplicial
mesh mesh mesh mesh mesh

2 0 0 0 0 0
4 0 0 0 0 0
6 1 1 1 1 1
8 0 0 0 0 0

10 1 0 0 0 0
12 0 3 2 2 2
14 2 0 1 0 0
16 0 0 1 2 1
18 5 6 3 3 4
20 0 0 4 3 3
22 11 0 3 3 1
24 0 17 4 6 9
26 27 0 5 6 3
28 0 0 13 10 10
30 78 42 10 5 10
32 0 0 10 17 11
34 234 0 12 6 7
36 0 118 41 28 30
38 778 0 29 25 15
40 0 0 24 30 30
42 2831 391 49 48 33
44 0 0 122 42 59
46 11122 0 91 70 35
48 0 1301 109 100 100

total 15090 1879 534 407 364
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